Hvad er oxidativ stress?

Free_radicals

For få antioxidanter i forhold til mængden af frie radikaler i kroppen kan medføre oxidativ stress, som er årsag til en række sygdomme. Senest har oxidativ stress vist sig at være involveret i overvægt.

Vi støder ofte på begrebet oxidativ stress i tekster om vitaminer, mineraler og antioxidanter. Noget med stress lyder ikke ligefrem sundt, men hvad ligger der egentlig i denne benævnelse, som mange vitaminer og mineraler angiveligt er i stand til at modvirke?

For at forstå oxidativ stress er det nødvendigt først at definere de forskellige elementer, der er involverede i denne proces.
Oxidativ stress kan kort defineres som en forstyrrelse i balancen mellem frie radikaler i kroppen og antioxidanter.

Frie radikaler
Frie radikaler er atomer eller grupper af atomer som er meget reaktive, dvs. de er meget villige til at reagere med andre stoffer, fordi de mangler en elektron. Denne manglende elektron medfører, at det frie radikal stjæler stjæler en elektron fra et omkringliggende molekyle i kroppens celler, som derved bliver til et nyt, frit radikal der derefter stjæler en elektron fra et nyt molekyle osv. På denne måde kan disse frie radikaler starte kædereaktioner, der kan forvolde stor skade på cellevægge, proteiner, signalstoffer samt – værst af alt – arvematerialet i cellekernen, også selv om det enkelte, frie radikal kun når at eksistere i brøkdele af et sekund.

Ilt og frie radikaler er janushovede
Ilt og frie radikaler har det tilfælles, at vi ikke kan undvære dem, de er begge vigtige komponenter i livet, men på samme tid kan de skade vores helbred.
På trods af deres dårlige ry er frie radikaler er heller ikke udelukkende dårlige. Vi har blandt andet brug for en vis mængde frie radikaler i vores immunforsvar som et våben mod sundhedsskadelige mikroorganismer.

Luften vi indånder indeholder 21% ilt. Ilt er et meget reaktionsvilligt atom, som nemt reagerer med alt muligt, også med ting i kroppen hvor det gør mere skade end gavn. Ilt optræder som regel med to iltatomer som O2. Ilt indgår i vores stofskifte, hvor fødens kemiske energi omdannes til cellebrændstof i form af ATP. Problemet med atmosfærens ilt er, at det på grund af dets reaktionsvillighed nemt binder sig de forkerte steder. Vi danner med andre ord hele tiden iltradikaler i forbindelse med stofskiftet, så når stofskiftet øges, stiger mængden af frie iltradikaler tilsvarende.

Også tungmetaller kan bidrage med frie radikal-skader i kroppen. Det sker når et frit radikal kolliderer med disse metaller, hvilket ligeledes resulterer i en kædereaktion, der skaber millioner af nye, frie radikaler.

Ved de nævnte kædereaktioner af frie radikaler overføres der elektroner fra ét stof til et andet. Det samme sker ved såkaldt oxidering eller iltning, hvor et stof reagerer med ilt. Harskning er et eksempel på oxidering af et fedtstof, for eksempel af smørret på køkkenbordet eller fedt i kroppen. Harsk fedt i kroppen er usundt. Kolesterol bliver også først farligt, når det oxideres.

De enkelte celler kan fungere dårligt eller dø, hvis de skades af frie radikaler. For at forhindre de frie radikaler i at skade kroppen har den et forsvarssystem af antioxidanter.

Antioxidanter
Antioxidanter er stoffer – naturlige eller syntetiske – der svækker eller forhindrer oxidation. Det sker ved at de afgiver en elektron til det frie radikal, hvorved den skadelige kædereaktion stopper. Forskellen mellem en antioxidant og andre stoffer er, at en antioxidant er stabil nok til ikke selv at blive et frit radikal, selv om den mister en elektron. Skaden efter mødet med det frie radikal medfører dog, at den ikke længere kan fungere som antioxidant, men beskadigede antioxidanter kan også repareres af andre antioxidanter, så de kan genoptage deres antioxidantfunktion. Da hver celle i kroppen dagligt udsættes for tusindvis af angreb fra frie radikaler, siger det noget om vigtigheden af et godt antioxidantforsvar.

Coenzym Q10 – den perfekte antioxidant
Eksempler på næringsstoffer med antioxidantfunktion er C-vitamin, E-vitamin, B2-vitamin, vitamin B6 samt mineralerne selen, zink, kobber og mangan. En lang række plantestoffer, herunder betacaroten, fungerer også som antioxidanter. Coenzym Q10 er imidlertid nok den mest robuste antioxidant, fordi hele dette stofs opgave i forvejen består i at modtage og afgive elektroner ved at skifte mellem dets oxiderede og reducerede tilstand. Det bliver således ikke beskadiget af at afgive elektroner til frie radikaler, og det kan nemt forsyne eksempelvis beskadiget E-vitamin med manglende elektroner uden selv at miste effekt.

Konsekvenser af oxidativ stress
Hvis vi nu vender tilbage til den oxidative stress med for mange frie radikaler i forhold til antioxidanter, så det forårsager sygdom. Af miljøfaktorer der bidrager med frie radikaler i kroppen kan nævnes luftforurening, tobaksrøg, stråling, lægemidler, hårdt muskelarbejde og betændelse, men der er også andre faktorer. Hvis vores kost indeholder for få antioxidanter i forhold til det aktuelle behov, så vil antioxidantforsvaret overvældes.

Også overvægt medfører oxidativ stress
De sygdomme som sættes i forbindelse med oxidativ stress er eksempelvis øjensygdomme som grå stær og makuladegeneration hos ældre,  kronisk ledegigt, hjerte-karsygdom som åreforkalkning og blodpropper, pletskaldethed, forskellige kræftformer og Alzheimers og Parkinsons sygdom.

Overspisning har været kendt som en væsentlig kilde til oxidativ stress. Senest har forskning bekræftet dette ved at vise, at konsekvensen af overspisning, som er overvægt, også medfører oxidativ stress. Det skræmmende er, at det kun tog forskerne to dage at fremkalde et forstadie til sukkersyge kaldet insulinresistens på sengeliggende raske personer. De fik dog hele 6000 kalorier om dagen, og efter en uge havde de taget 3,5 kg på. Forskerne mener også at have fundet mekanismen, idet de fandt tegn på, at de frie radikaler havde beskadiget et af kroppens sukkertransportmolekyler kaldet GLUT4. Det er i forvejen kendt, at senfølger af sukkersyge skyldes oxidativ stress.

Anti-aging
Antioxidanter er et stort hit indenfor det, der kaldes anti-aging. Med anti-aging menes udsættelse af de alderdomstegn som skyldes, at også Solens ultraviolette stråler danner frie radikaler, der beskadiger hudens bindevæv og danner rynker i huden. Også ophobede skader på DNA, som ikke bliver repareret, fremmer aldringsprocessen.

Refs.
Fusco D, et al. Effects of antioxidant supplementation on the aging process Clin Interv Aging. 2007; 2(3):377–87.
Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3-8.
Boden G, et al. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Science Translational Medicine 2015;7(304):304re7

Klik her for at søge mere info om antioxidanter og oxidativ stress

Mitokondriesygdom, hvad er det?

Pixabay_exhausted

Sygdom i kroppens mitokondrier går i første række ud over kroppens energiproduktion.

Hvis tænderne i det allermindste tandhjul i et ur er slidte eller mangler, så vil uret ikke gå præcist og måske gå helt i stå. Denne analogi kan også bruges om sygdom i cellernes mitokondrier, som skyldes nedarvede eller opståede ændringer i mitokondriernes genom.  Faktisk har det vist dig, at mitokondriesygdom er involveret i en lang række kendte sygdomme. Symptomer fra mitokondriesygdom kan i mange tilfælde – på trods af at være uhelbredelig – i nogen grad afhjælpes med en række tilskud.

Mitokondrier er små, aflange, såkaldte organeller eller ‘celleorganer’ der ligner ligner bakterier. Alle kroppens celler på nær de røde blodlegemer indeholder mitokondrier, typisk 500 til 2000 mitokondrier. Jo mere energikrævende cellen er, desto flere mitokondrier indeholder den. Mitokondrierne producerer næsten al kroppens energi ved en kemisk omsætning af madens grundbestanddele med hjælp af ilt til stoffet adenosintrifosfat (ATP) som er kemisk bundet energi.

Mitokondrierne har brug for coenzym Q10 til at producere ATP. Kropppens celler kan normalt selv producere noget Q10. Lidt populært sagt kan man sige, at kroppen starter med at lave Q1, derefter Q2, Q3 og så fremdeles frem til Q10. Mange forskellige ting kan gå galt undervejs. Derfor siger det sig selv, at hvis disse mitokondrier ikke fungerer som de skal, eller hvis cellerne ikke er i stand til at producere tilstrækkeligt Q10, så får det mærkbare konsekvenser overalt i kroppen, og mest tydeligt i de dele af kroppen, der er mest energikrævende, så som musklerne og herunder hjertemusklen samt nervesystemet.

Mitokondrier er måske urbakterier
Mitokondriers store lighed med bakterier – de har blandt andet også deres eget, ringformede DNA med 37 gener, som er helt forskelligt fra cellekernens DNA – danner baggrund for den teori, at en ikke-iltkrævende celle engang for milliarder år siden optog en iltproducerende bakterie og indgik i symbiose med denne bakterie, som siden udviklede sig til et mitokondrie.

Konsekvenser af mitokondriesygdom
Forskere har kun et delvist overblik over de involverede, biokemiske processer, og de forskellige defekter i dette forløb som er årsagen til mitokondriesygdom. Det skyldes, at der er enzymer eller proteiner i disse processer, hvis funktion enten er ukendt eller ikke fuldt opklarede.

Mitokondriesygdom adskiller sig på flere måder fra andre, genetiske lidelser, der påvirker musklerne. I nogle tilfælde mærkes mitokondriesygdom kun i kroppens bevægemuskler og i hjertet, men oftest forårsager lidelsen problemer i mange forskellige steder i kroppen som involverer nervesystemet, synssansen, nyrefunktionen, fordøjelsessystemet og kredsløbet. Der er ingen organer i kroppen som ikke kan påvirkes af mitokondriesygdom.

Der sker det, at når når centrale dele i den kæde af biokemiske processer der udgør mitokondriernes energiproduktion enten mangler eller er defekte, så nedsættes elektrontransporten, eller den går i stå. Det medfører, at mitokondriet ikke producerer nok ATP, hvorved cellen mangler energi og er ude af stand til at udføre sine normale funktioner. Også biokemiske processer bag det punkt hvor problemet starter, begynder at gå galt, fordi stoffer hobes op og danner en unormal kemi, hvoraf nogle stoffer er skadelige. Det kan være frie radikaler og giftstoffer. En anden konsekvens af den nedsatte energiproduktion er, at der dannes en stor mængde mælkesyre, som i store mængder kan være skadelig alt efter, hvor i kroppen den hobes op.

Sygdom i mitokondrierne udbredt
Sygdom i kroppens mitokondrier blev først opdaget i 1962 og blev dengang betragtet som sjælden. Det er ved at ændre sig, idet vi i dag ved, at skader på mitokondrierne kan spille en rolle ved en lang række forskellige lidelser. Symptomer fra mitokondriesygdom kan begynde i alle aldre. Børn får ofte sygdommen tidligt, men mange symptomer viser sig først i voksenalderen.

Nedarvede mitokondrieskader
Mitokondriesygdom kan nedarves, enten via mitokondrie-DNA, som kun kommer fra fra moderen, eller via kerne-DNA fra den ene eller begge forældre. Mitokondrier fra mandens sædceller slipper normalt ikke ind i ægget, og skulle der slippe mandligt mitokondrie-DNA ind, vil det blive nedbrudt.

Symptomer
Listen over symptomer og sygdomme der kan være involveret i mitokondriesygdom er lang, og symptomerne varierer meget, fordi cellerne både indeholder normale og skadede mitokondrier, og det indbyrdes forhold mellem dem varierer også alt efter hvilke organer og væv, der er mest ramt. Som nævnt kommer de mest udtalte symptomer fra de organer med de største energibehov.
Til trods for de mangeartede symptomer som mitokondriesygdom kan medføre, så er der hos voksne en række veldefinerede syndromer (grupper af symptomer) og sygdomme, som ofte skyldes mutationer i mitokondrie-DNA. Heriblandt kan nævnes ekstrem træthed, muskelsvaghed, nedsat hjertefunktion, hjernesygdomme som f.eks. Parkinsons sygdom, skizofreni og slagtilfældelignende anfald, kramper og problemer med maven i form af forstoppelse og sure opstød, ikke-alkoholisk fedtlever, ophobning af mælkesyre i kroppen, Derudover hængende øjenlåg, lammelse af øjenmuskler, nethindesygdomme, nedsat balance- og koordinationsevne samt indlæringsvanskeligheder.

Faktisk er der nu røster fremme om, at skader på mitokondrierne også kan opstå som følge af flere slags medicin og kan forklare mange af dets bivirkninger, et emne der kalder på mere forskning.

Behandling
At der endnu ikke kendes nogen helbredelse for mitokondriesygdom betyder ikke, at der ikke findes stoffer der muligvis kunne gavne. Patienter med identiske symptomer har haft forskellig gavn af disse tilskud. En del har haft god gavn, i nogle tilfælde er der set en dramatisk forbedring. Nedenstående er en ufuldstændig liste over tilskud, der kan forsøges, men gør det i samråd med en læge.

Antioxidanter
Normalt medfører de biokemiske processer i mitokondries såkaldte respirationskæde ikke dannelse af ret mange frie radikaler, men ved mitokondriesygdom, hvor denne respirationskæde ikke fungerer normalt, vil mængden af frie radikaler øges, hvilket skader mitokondriet og dets processer yderligere. Inde i mitokondriet er der ingen reparationsmekanismer der kan reparere skader på mitokondrie-DNA og andet. Derfor er mitokondriet meget afhængig af, at der antioxidanter til stede der kan forhindre disse skader. Det har givet anledning til at forsøge med tilskud forskellige antioxidanter, men resultatet har kun givet mærkbare resultater i nogle tilfælde. De mest anvendte antioxidanter ved mitokondriesygdom er coenzym Q10, C-vitamin, E-vitamin og lipoinsyre.

Coenzym Q10
Q10 fungerer dels som en vigtig transportør af elektroner i den respirationskæde i mitokondriet, der producerer energi. Derudover har Q10 er vigtig funktion som antioxidant. Vi får vi noget Q10 fra kosten, men vi kan vi ikke spise os til den mængde Q10, som har bevist sin værdi i behandling af blandt andet hjertesygdom, hvor hjertet har manglet energi. Tilskud har også gavnet patienter i behandling med statinpræparater, hvor kroppens egenproduktion af Q10 var nedsat med energiunderskud til følge, ved Golfkrigssyndrom, hvor oxidativ stress havde nedsat mitokondriernes evne til at producere ATP, og det har også vist en række forbedringer hos patienter med mitokondriesygdom. Doseringen bør være relativt høj, dvs. 100 mg ubiquinon 2 -3 gange dagligt.

Carnitin
Der er en teoretisk mulighed for at tilskud af aminosyren carnitin kan hjælpe kroppen med at skille sig af med de overskydende stofskifteprodukter som hobes op, når energiproduktionen går i stå. Det skyldes, at carnitin hjælper med at transportere andre molekyler. Blandt andet hjælper det med at transportere langkædede fedtsyrer ind i mitokondrierne, hvor stoffet Q10 medvirker til at forbrænde dem, men det binder også stofskifteprodukter i cellerne og fragter dem ud, så de kan udskilles med urinen. Doseringen bør være 2 -3 g dagligt.

Andre relevante stoffer
K-vitamin kan i nogle tilfælde gavne. Ved et lavt iltindhold i blodet hjælper K-vitamin med overførsel af elektroner i respirationskæden der danner ATP.
Hele B-vitaminkomplekset, der består af otte vitaminer, understøtter mitokondriets energiproduktion på forskellig vis og hjælper med at fjerne skadelige stoffer fra mitokondriet.
Ophobning af mælkesyre kan behandles med bikarbonat. Der forskes også i tilskud af stoffet kreatinfosfat

Refs.
Kohls GG. Iatrogenic Drug and Vaccine-induced Mitochondrial Disorders. Global Research, May 06, 2015
Hesterlee  S. Mitochondrial disease in perspective symptoms, diagnosis and hope for the future. mitoresearch.org
Østergaard E, et al. Mitokondriesygdomme. UFL 2003;165(07): 663-8.
Marriage B. Coenzyme Q10 in the Treatment of Mitochondrial Disorders. www.fodsupport.org/pdf/CoQ10_article.pdf.
Depeint F, et al. Mitochondrial function and toxicity: Role of the B vitamin family in mitochondrial energy metabolism. Chem Biol Interact. 2006;163(1-2):94-112.

Klik her for at læse mere om tilskud til mitokondrierne

Årelang gunstig effekt af antioxidant-tabletter

Longlasting_antioxidants

En videnskablig undersøgelse har vist en fortsat, markant, sundhedsgavnlig effekt af et antioxidanttilskud mange år efter undersøgelsens ophør.

Et videnskabeligt tidsskrift har bragt et forbløffende forskningsresultat fra en undersøgelse, der blev påbegyndt i 1988 og viste en 50% reduktion af polypper i tyktarmen hos patienter, der tog antioxidant-tabletter. Endnu mere forbløffende er det dog, at risiko-nedsættelsen i antioxidant-gruppen efter 13 år er næsten uforandret på 40%.

Baggrunden for den undersøgelse, der blev påbegyndt for 24 år siden af doktor Bonelli og hendes team fra Det Nationale institut for Cancer Forskning i Genoa var, at polypper (adenomer) fjernet fra tyktarmen har en øget tilbøjelighed til at vende tilbage. Da polypper i tyktarmen i nogle tilfælde udvikler sig til tyktarmskræft, vil tilskud af antioxidanter være en interessant mulighed, såfremt de er i stand til at forebygge udvikling af denne kræftform. Netop dette var, hvad Bonelli og medarbejdere demonstrerede allerede fem år efter undersøgelsens start.

To antioxidant-tabletter
Tilbage i 1988 blev 411 frivillige forsøgspersoner udvalgt til enten at modtage 2 stk antioxidant-tabletter dagligt eller tilsvarende placebotabletter i fem år. Undersøgelsen var et dobbelt-blindet, placebokontrolleret lodtrækningsforsøg. Deltagerne var mellem 25 og 75 år med det til fælles, at de alle havde fået en eller flere polypper fjernet fra deres tyktarm. De var alle raske ved undersøgelsens start, og ingen tog vitamin- og mineraltilskud.

De to antioxidant-tabletter, som udgjorde den aktive behandling, indeholdt 200 µg selen, 30 mg zink, 2 mg A-vitamin, 180 mg C-vitamin og 30 mg E-vitamin.

Imponerende resultat – ringe formidling
Efter fem år viste undersøgelsen en 50% reduktion af polypper i tyktarmen hos antioxidant-gruppen i forhold til placebogruppen. Desværre blev forskningen aldrig udgivet i et videnskabeligt tidsskrift, men blot præsenteret på en konference i 1998 og udgivet som et konference-papir.

Virkningen holder
For nogle år siden besluttede Dr. Bonelli at undersøge den gamle forsøgsgruppe igen, og efter 13 år kunne hun stadig se en bemærkelsesværdig og signifikant forskel på placebo- og aktiv-grupperne, som nu efter 15 år er på hele 39% til fordel for antioxidanterne. Det er dermed det længst varende antioxidant-studie på forebyggelse af tyk- og endetarms-cancer, hvilket sammen med den valgte metode giver undersøgelsesresultatet en meget høj troværdighed.

Ref
Bonelli L, et al. Antioxidant supplement and long-term reduction of recurrent adenomas of the large bowel. A double-blind randomized trial. J Gastroenterol 2012. E-pub ahead of print.

Vitaminpiller kan gøre mænd mere frugtbare

Silhuet_men

Op imod en femtedel af par i den fødedygtige alder har problemer med at få børn, og i cirka halvdelen af tilfældene skyldes det mandens ringe sædkvalitet.

Britiske forskere er netop kommet ud med en ny rapport, der dokumenterer, at mænd kan øge chancerne for at blive fædre, hvis de tager tilskud af bestemte antioxidanter.

Britiske forskere fra Guy’s and St. Thomas’ NHS Foundation Trust i London har imidlertid lige offentliggjort en rapport, som konkluderer, at chancerne for befrugtning øges, hvis mænd tager tilskud af særlige antioxidanter, især vitamin C, vitamin E og selen.

Øger sædkvaliteten
Den nye rapport, som er offentliggjort i Reproductive BioMedicine Online, er en omfattende gennemgang af ialt 17 randomiserede kliniske studier, der ser på, hvordan vitamin C og E, selen, zink, folinsyre, carnitin og carotenoider indvirker på sædkvalitet og antallet af graviditeter. Blandt de vigtigste observationer foretaget af forskerne kan nævnes at:

  • 75 procent af undersøgelserne viste en forbedring af mindst sperm-parameter sammenlignet med placebo eller ingen behandling
  • 63 procent af undersøgelserne viste signifikant forbedring af sperm-motilitet (sædcellers evne til at bevæge sig) i forhold til placebo
  • 33 procent af undersøgelserne viste en forbedring af sperm-koncentrationen (antallet af sædceller)
  • Antioxidant-supplementering viste sig som helhed at øge antallet af graviditeter med 19 procent. I placebo-/kontrolgrupperne blev den til sammenligning blot øget med tre procent.

Understøtter tidligere forskning
Tilsvarende observationer er gjort i tidligere offentliggjorte undersøgelser. For eksempel viste skotske forskere, hvordan tre måneders supplementering med selen øgede sædcelle-motiliteten markant hos mænd med fertilitetsproblemer. Ligeledes viste italienske forskere fra University of Marche i Ancona, hvordan tilskud af det vitamin-beslægtede stof coenzym Q10 også havde en positiv indflydelse på sædcellernes bevægelighed. Stoffet er med til at regulere cellers energiomsætning. Man så, hvordan sædcellernes Q10-indhold steg som følge af supplementeringen, og dette understreger stoffets betydning for sædcellernes energiproduktion

Kilde:

  1. Reproductive BioMedicine Online Volume 20, Pages 711-723
    “A systematic review of the effect of oral antioxidants on male infertility”
    Authors: C Ross, A Morriss, M Khairy, Y Khalaf, P Braude, A Coomarasamy, T El-Toukhy
  2. Br J Urol. 1998 Jul;82(1):76-80.
  3. Fertil Steril. 2009 May;91(5):1785-92.